NAU RoboSub

Mansour Alajemi¹, Feras Aldawsari¹, Curtis Green², Dan Heaton¹, Wenkai Ren¹, William Ritchie², Bethany Sprinkle¹, Daniel Tkachenko¹

¹Department of Mechanical Engineering ²Department of Electrical and Computer Engineering

Overview

- Introduction
- Competition tasks
- Needs/Goals
- Constraints/ Features
- Camera Box
- Endcaps

- Externals
- Internals
- Electrical
- Software
- Conclusion

Introduction

• Robosub 2016 competition

• Client: Dr. Kosaraju

• NAU's first time participating

AUVSI Robosub Competition

2016 competition theme: Pirates

In the competition the sub will gain points for:

- Bumping two buoys in order (red then green)
- Pulling a third yellow "buoy" downward, "scuttling" an attached boat floating on surface
- Passing through a pvc U (8' by 4')
- Dropping markers into 2 plastic bins
 - One bin has a cover with a PVC handle that needs to be removed
- Firing torpedoes through 12" and 7" squares
- Surfacing in a 9' octagon marked with a pinger 16' below the surface acoustic pinger
 - Extra points for carrying an object up from the floor then descending and placing near an X

Robosub Needs/Goal

- Needs: NAU has no robosub for the AUVSI competition
- Goal: complete a new robosub ready for competition in July 2016

Includes aspects from :

- Mechanical
- Electrical
- Software

Constraints

- Autonomous
- Fits in 6' x 3' x 3' volume
- Has waterproof kill switch
- Must be at least 1% buoyant
- 15 minute time limit
- Weighs less than 125 lb
 - Extra points for weight < 84lb, 48.5lb, 22lb

Required Features

- Water tight enclosure
 - Obstacles are max 16' deep (~22 psi)
- External frame
 - Mounts sensors and thrusters
- Electrical circuit
- Internal frame for electronics
 - Must account for heat
- Autonomy software

Camera Box

- Front and bottom facing cameras
 - 3D print mount
- Acrylic windows sealed with epoxy & silicone
- Epoxy and clamps to fasten to body
- Rubber gasket between tube
- Problems...
 - Tube not perfectly circular

End Caps

- Through ports for cables
- Water tight
 - O-rings x3 per end cap
- Aluminum end caps
 - Machinability
 - Heat release from system

Manufacturing End Caps

- Drilled holes for cables
- Drilled holes through bolts
- O-rings/epoxy for water tightness

External Design

- Metal-frame design
 - Three tubes, bottom for ballast
 - Rigid metal construction
 - Difficult to mount external systems

External Frame

- Changed due to unexpected instabilities
 - Sheet metal strips / angle brackets
 - Angle brackets provide rigidity
 - Strips provide stability
 - Threaded rod holds construction rigidly together
- Alternatively: 3D print from ABS plastic
 - Mechanically superior to PLA
 - Stronger
 - Low risk of delamination
 - Superior finishing qualities (sanding, drilling)
 - Faster and cheaper to manufacture

L Channel connection for Thruster

- Increases strength on the U and X shape brackets
- Prevent torsion problem between tube and brackets
- Can be moved for relocation

Nick named, "Frankenstein"

External design: Completed prototype Trident

Nick named, "Frankenstein II"

Internals Introduction

- Modular design
 - Mix and match sections
- Repurposed misprinted sections
- Heat sinks for:
 - Electric Speed Controllers (ESCs)
 - Batteries

	High Power Electronics									
4-2 cons	DB25 connect	Electronic Speed Controllers (ESC's)	terminals	Board holders : motor Ard	terminals	Main Motor Batteries				

Sensitive Electronics											
4-2 cons	DB25 connect	USB hub	Ethernet Hub	4-2 cons	Board holders : main split aux ard	RPI holders	4-2 cons	Sonar (future)	Low power 5v batteries (future)		

Internal design with the hardware

Electrical Subsystems

- Hardware
 - Power
 - Control

• Software

- Visualization
- Communication
- Orientation
- Motor feedback
- Sonar

Electrical Concept Generation

Hardware & software

- Talk to grad students and professors
- Look at competing teams
- Work with what we know
- Learn what we should know
- What components and libraries we need
- What circuits and algorithms to develop

Raspberry Pi

Final Software Design

Image Detection

Threshold applied

Green circle detected

[10] OpenCV Documentation, [11] OpenCV install Tutorial

Threshold applied

Orange line detected

Electrical Prototype Fabrication

Basic motor feedback of visual processing

Test system set up

Assembling the internals

EE Design Modifications

- Buck converters added
- Relay for main power On/Off
- DB communication cable
- Queued Socket Programming
- Simplified Software

[7] Amazon

Completed Electrical Hardware Prototype

EE Performance

Software

- Find and kill ghost threads
- Computation time testing
- Find programing bugs
 - Threading issues
 - Lock passing issues
- Image detection:
 - Lighting
 - Threshold parameters
 - Image size
 - Decipher image data

Hardware:

- Find and fix bad circuit elements
- Find and fix unwanted behaviour
- Eliminate motor controller heat
- EM Noise in the DB cable

Finding Board shorts

ESC heat to hull (W/ no foil)

Testing and Results

Video

Development for the future

- Torpedos
- Clasping
- Sonar
- Practice course construction
- Mechanical updates
- More programs

Conclusions

- Designed a submarine for 2016 Robosub competition
- Educational experience
- Manufactured systems
 - Camera
 - External
 - Internal
 - Electronics
 - Software

Acknowledgements

- Mr. Steve Hengl, Orbital ATK
- EE & CS professors for advice
 - Julie Heynssens
 - Philip Mlsna
 - Dieter Otte
 - James Palmer
- The 98C shop staff:
 - Perry Wood
 - John Tester
 - Ricardo Inzunza
 - Derrick Lemons
- Dr. Kosaraju for guidance

References

- "Robosub 2016 Preliminary Mission and Scoring" Dec 12, 2015. 1. http://www.auvsifoundation.org/competitions/competition-central/robosub/robosub-team-central 2. Skull and crossbones http://www.playcrossbones.com/Jolly Roger Flag.php#sthash.ALQDy6CK.dpbs 3. Blue Robotics https://www.bluerobotics.com/store/ Python Symbol 4. https://realpython.com/learn/python-first-steps/ Arduino Image 5. https://electrosome.com/arduino/ Raspberry Pi Image 6. https://www.raspberrypi.org/ Amazon online item images 7. http://www.amazon.com/ Sonar data picture 8. http://www.bathyswath.com/iho-standards **Orbital ATK logo** 9. http://www.aerospacemanufacturinganddesign.com/article/orbital-atk-aerospace-merge-050114/ 10. **OpenCV** documentation http://docs.opencv.org
- 11. OpenCV install tutorial

http://www.pyimagesearch.com/2015/02/23/install-opencv-and-python-on-your-raspberry-pi-2-and-b/

Questions?

